Эволюция интегральной электроники. Эволюция интегральной электроники Год поступления в продажу 1 интегральной схемы

Задания к § 1.3

ВСЕМИРНАЯ ПАУТИНА

1. Приведены запросы к поисковой системе:

Представьте результаты выполнения этих запросов графически с помощью кругов Эйлера. Укажите номера запросов в порядке возрастания количества документов, которые найдёт поисковая система по каждому запросу.

369 " style="width:276.55pt;border-collapse:collapse">

запрос

Найдено страниц

чай& кофе

чай| кофе

Какое количество страниц будет найдено по запросу «чай»?

_____________________________________________________

Разгадайте числовой кроссворд.

Ответы на вопросы ищите во Всемирной паутине.

По горизонтали . 1. Год поступления в продажу первой интегральной схемы, выполненной на пластине кремния. 3. Год рождения. 4. Год, предшествовавший году выпуска ОС Windows 3.1.
8. Год рождения Блеза Паскаля. 9. Год рождения Ады Лавлейс.

По вертикали . 1. Год рождения Леонардо да Винчи. 2. Год, в котором французский инженер Валтат выдвинул идею использования двоичной системы счисления при создании механических счётных устройств.
3. Год ввода в эксплуатацию МЭСМ. 5. Год, в котором был разработан язык программирования Бейсик. 6. Год рождения Евклида (до н. э.).
7. Год рождения Аристотеля (до н. э.)

Назовите первое вычислительное устройство. Абак Калькулятор Арифмометр русские счеты Какую идею выдвинул в середине

19 века английский математик Чарльз Бэббидж?

Идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройство ввода и печати

Идею создания сотового телефона

Идею создания роботов, управляемых компьютером

В каком году и где была создана первая ЭВМ на основе электронных ламп?

1945 год, США

1944 г, Англия

1946 г, Франция

На какой базе были созданы ЭВМ третьего поколения?

Интегральные схемы

полупроводники

электронные лампы

сверхбольшие интегральные схемы

Как назывался первый персональный компьютер?

Назовите центральное устройство компьютера.

Процессор

Системный блок

Блок питания

Материнская плата

Процессор обрабатывает информацию представленную:

В десятичной системе счисления

На английском языке

На русском языке

На машинном языке (в двоичном коде)

Для ввода числовой и текстовой информации используется

Клавиатура

Сканер используется для…

Для ввода в компьютер изображений и текстовых документов

Для рисования на ней специальной ручкой

Перемещения курсора на экране монитора

Получения голографических изображений

10. Какой тип принтера целесообразно использовать для печати финансовых документов?

Матричный принтер

Струйный принтер

Лазерный принтер

Какой тип принтера целесообразно использовать для печати рефератов?

Матричный принтер

Струйный принтер

Лазерный принтер

Какой тип принтера целесообразно использовать для печати фотографий?

Матричный принтер

Струйный принтер

Лазерный принтер

При несоблюдении санитарно – гигиенических требований компьютера вредное влияние на здоровье человека может оказать…

Монитор на электронно – лучевой трубке

Монитор на жидких кристаллах

Плазменные панели

При выключении компьютера вся информация стирается из…

Оперативной памяти

Жесткого диска

Лазерного диска

В каком устройстве компьютера осуществляется хранение информации?

Внешняя память;

процессор;

Оптические дорожки имеют меньшую толщину и размещены более плотно на …

Цифровом видеодиске (DVD – диске)

Компакт диске (CD – диске)

В устройства ввода входят…

В устройства вывода входят…

Клавиатура, мышь, джойстик, световое перо, сканер, цифровая камера, микрофон

Звуковые колонки, монитор, принтер, наушник

Жесткий диск, процессор, модули памяти, материнская плата, дискета

Программой называется…

Компьютерная программа может управлять работой компьютера, если она находится…

В оперативной памяти

На гибком диске

На жестком диске

На CD – диске

Данные – это…

Последовательность команд, которую выполняет компьютер в процессе обработки данных

Информация, представленная в цифровой форме и обрабатываемая на компьютере

Данные, имеющие имя и хранящиеся в долговременной памяти

Файл – это…

Текст распечатанный на компьютере

Информация, представленная в цифровой форме и обрабатываемая на компьютере

Программа или данные, имеющие имя и хранящиеся в долговременной памяти

При быстром форматировании гибкого диска

Производится очистка каталога диска

Стираются все данные

Производится дефрагментация диска

Производится проверка поверхности диска

При полном форматировании гибкого диска…

стираются все данные

производится полная проверка диска

производится очистка каталога диска

диск становится системным

В многоуровневой иерархической файловой системе...

Файлы хранятся в системе, представляющей собой систему вложенных папок

Файлы хранятся в системе, которая представляет собой линейную последовательность

История развития вычислительной техники:

1. Назовите первое вычислительное устройство.
1) Абак
2) Калькулятор
3) Арифмометр
4) русские счеты

2. Какую идею выдвинул в середине 19 века английский математик Чарльз Бэббидж?
1) Идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройство ввода и печати
2) Идею создания сотового телефона
3) Идею создания роботов, управляемых компьютером
3. Назовите первого программиста вычислительных машин.
1) Ада Лавлейс
2) Сергей Лебедев
3) Билл Гейтс
4) Софья Ковалевская

4. В каком году и где была создана первая ЭВМ на основе электронных ламп?
1) 1945 год, США
2) 1950, СССР
3) 1944 г, Англия
4) 1946 г, Франция

5. На какой базе были созданы ЭВМ третьего поколения?
1) Интегральные схемы
2) полупроводники
3) электронные лампы
4) сверхбольшие интегральные схемы

6. Как назывался первый персональный компьютер?
1) Apple II
2) IBM PC
3) Dell
4) Корвет
Устройство компьютера.........................15
1. Назовите центральное устройство компьютера.
1) Процессор
2) Системный блок
3) Блок питания
4) Материнская плата
2. Как записывается и передается физическая информации в ЭВМ?
1) цифрами;
2) с помощью программ;
3) представляется в форме электрических сигналов.

3. Процессор обрабатывает информацию представленную:
1) В десятичной системе счисления
2) На английском языке
3) На русском языке
4) На машинном языке (в двоичном коде)
4. Для ввода числовой и текстовой информации используется
1) Клавиатура
2) Мышь
3) Трекбол
4) Ручка
5. Важнейшей характеристикой координатных устройств ввода является разрешающая способность, которая обычно составляет 500 dpi (dot per inch – точек на дюйм (1 дюйм = 2,54 см)), что означает…
1) При перемещении мыши на один дюйм указатель мыши перемещается на 500 точек
2) При перемещении мыши на 500 точек указатель мыши перемещается на один дюйм
6. Сканер используется для…
1) Для ввода в компьютер изображений и текстовых документов
2) Для рисования на ней специальной ручкой
3) Перемещения курсора на экране монитора
4) Получения голографических изображений
Устройства вывода информации.................21
1. Какой тип принтера целесообразно использовать для печати финансовых документов?
1) Матричный принтер
2) Струйный принтер
3) Лазерный принтер
2. Какой тип принтера целесообразно использовать для печати рефератов?
1) Матричный принтер
2) Струйный принтер
3) Лазерный принтер

1. Какой тип принтера целесообразно использовать для печати фотографий?
1) Матричный принтер
2) Струйный принтер
3) Лазерный принтер
2. При несоблюдении санитарно – гигиенических требований компьютера вредное влияние на здоровье человека может оказать…
1) Монитор на электронно – лучевой трубке
2) Монитор на жидких кристаллах
4) Плазменные панели
3. Устройство, которое обеспечивает запись и считывание информации называется…
1) Дисководом или накопителем

4. При выключении компьютера вся информация стирается из…
4) Оперативной памяти
5) Жесткого диска
6) Лазерного диска
7) Дискеты
13. В каком устройстве компьютера осуществляется хранение информации?
1) Внешняя память;
2) монитор;
3) процессор;
2. Оптические дорожки имеют меньшую толщину и размещены более плотно на …
1) Цифровом видеодиске (DVD – диске)
2) Компакт диске (CD – диске)
3) Дискете
3. На каком диске информация хранится на концентрических дорожках, на которых чередуются намагниченные и ненамагниченные участки
1) На дискете
2) На компакт диске
3) На DVD – диске

4. В устройства ввода входят…

1) Жесткий диск, процессор, модули памяти, материнская плата, дискета
5. В устройства вывода входят…
1) Клавиатура, мышь, джойстик, световое перо, сканер, цифровая камера, микрофон
2) Звуковые колонки, монитор, принтер, наушник
3) Жесткий диск, процессор, модули памяти, материнская плата, дискета
6. Программой называется…

7. Компьютерная программа может управлять работой компьютера, если она находится…
1) В оперативной памяти
2) На гибком диске
3) На жестком диске
4) На CD – диске
8. Данные – это…
1) Последовательность команд, которую выполняет компьютер в процессе обработки данных
2) Информация, представленная в цифровой форме и обрабатываемая на компьютере
3) Данные, имеющие имя и хранящиеся в долговременной памяти
9. Файл – это…
1) Текст распечатанный на компьютере
2) Информация, представленная в цифровой форме и обрабатываемая на компьютере
3) Программа или данные, имеющие имя и хранящиеся в долговременной памяти

10. При быстром форматировании гибкого диска …
1) Производится очистка каталога диска
2) Стираются все данные
3) Производится дефрагментация диска
4) Производится проверка по

1. Когда и кем были изобретены счетно-перфорационные машины? Какие задачи на них решались?

2. Что такое электромеханическое реле? Когда создавались релейные вычислительные машины? Каким быстродействием они обладали?
3. Где и когда была построена первая ЭВМ? Как она называлась?
4. Какова роль Джона фон Неймана в создании ЭВМ?
5. Кто был конструктором первых отечественных ЭВМ?
6. На какой элементной базе создавались машины первого поколения? Каковы были их основные характеристики?
7. На какой элементной базе создавались машины второго поколения? В чем их преимущества по сравнению с первым поколением ЭВМ?
8. Что такое интегральная схема? Когда были созданы первые ЭВМ на интегральных схемах? Как они назывались?
9. Какие новые области применения ЭВМ возникли с появлением машин третьего поколения?

полупроводника . Осуществление этих предложений в те годы не могло состояться из-за недостаточного развития технологий.

В конце 1958 года и в первой половине 1959 года в полупроводниковой промышленности состоялся прорыв. Три человека, представлявшие три частные американские корпорации, решили три фундаментальные проблемы, препятствовавшие созданию интегральных схем. Джек Килби из Texas Instruments запатентовал принцип объединения, создал первые, несовершенные, прототипы ИС и довёл их до серийного производства. Курт Леговец из Sprague Electric Company изобрёл способ электрической изоляции компонентов, сформированных на одном кристалле полупроводника (изоляцию p-n-переходом (англ. P–n junction isolation )). Роберт Нойс из Fairchild Semiconductor изобрёл способ электрического соединения компонентов ИС (металлизацию алюминием) и предложил усовершенствованный вариант изоляции компонентов на базе новейшей планарной технологии Жана Эрни (англ. Jean Hoerni ). 27 сентября 1960 года группа Джея Ласта (англ. Jay Last ) создала на Fairchild Semiconductor первую работоспособную полупроводниковую ИС по идеям Нойса и Эрни. Texas Instruments , владевшая патентом на изобретение Килби, развязала против конкурентов патентную войну, завершившуюся в 1966 году мировым соглашением о перекрёстном лицензировании технологий.

Ранние логические ИС упомянутых серий строились буквально из стандартных компонентов, размеры и конфигурации которых были заданы технологическим процессом. Схемотехники, проектировавшие логические ИС конкретного семейства, оперировали одними и теми же типовыми диодами и транзисторами. В 1961-1962 гг. парадигму проектирования сломал ведущий разработчик Sylvania Том Лонго, впервые использовав в одной ИС различные конфигурации транзисторов в зависимости от их функций в схеме. В конце 1962 г. Sylvania выпустила в продажу первое семейство разработанной Лонго транзисторно-транзисторной логики (ТТЛ) - исторически первый тип интегральной логики, сумевший надолго закрепиться на рынке. В аналоговой схемотехнике прорыв подобного уровня совершил в 1964-1965 годах разработчик операционных усилителей Fairchild Боб Видлар .

Первая отечественная микросхема была создана в 1961 году в ТРТИ (Таганрогском Радиотехническом Институте) под руководством Л. Н. Колесова . Это событие привлекло внимание научной общественности страны, и ТРТИ был утверждён головным в системе минвуза по проблеме создания микроэлектронной аппаратуры высокой надёжности и автоматизации её производства. Сам же Л. Н. Колесов был назначен Председателем координационного совета по этой проблеме.

Первая в СССР гибридная толстоплёночная интегральная микросхема (серия 201 «Тропа») была разработана в 1963-65 годах в НИИ точной технологии («Ангстрем »), серийное производство с 1965 года. В разработке принимали участие специалисты НИЭМ (ныне НИИ «Аргон») .

Первая в СССР полупроводниковая интегральная микросхема была создана на основе планарной технологии , разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ «Пульсар») коллективом, который в дальнейшем был переведён в НИИМЭ («Микрон »). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов - эквивалент схемотехнической сложности триггера , аналога американских ИС серии SN -51 фирмы Texas Instruments ). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились в НИИ-35 (директор Трутко) и Фрязинским полупроводниковым заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты . Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год) .

Параллельно работа по разработке интегральной схемы проводилась в центральном конструкторском бюро при Воронежском заводе полупроводниковых приборов (ныне - ). В 1965 году во время визита на ВЗПП министра электронной промышленности А. И. Шокина заводу было поручено провести научно-исследовательскую работу по созданию кремниевой монолитной схемы - НИР «Титан» (приказ министерства от 16.08.1965 г. № 92), которая была досрочно выполнена уже к концу года. Тема была успешно сдана Госкомиссии, и серия 104 микросхем диодно-транзисторной логики стала первым фиксированным достижением в области твердотельной микроэлектроники, что было отражено в приказе МЭП от 30.12.1965 г. № 403.

Уровни проектирования

В настоящее время (2014 г.) большая часть интегральных схем проектируется при помощи специализированных САПР , которые позволяют автоматизировать и значительно ускорить производственные процессы , например, получение топологических фотошаблонов.

Классификация

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • малая интегральная схема (МИС) - до 100 элементов в кристалле,
  • средняя интегральная схема (СИС) - до 1000 элементов в кристалле,
  • большая интегральная схема (БИС) - до 10 тыс. элементов в кристалле,
  • сверхбольшая интегральная схема (СБИС) - более 10 тыс. элементов в кристалле.

Ранее использовались также теперь уже устаревшие названия: ультрабольшая интегральная схема (УБИС) - от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) - более 1 млрд элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Технология изготовления

  • Полупроводниковая микросхема - все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния , германия , арсенида галлия , оксида гафния).
  • Плёночная интегральная микросхема - все элементы и межэлементные соединения выполнены в виде плёнок :
    • толстоплёночная интегральная схема;
    • тонкоплёночная интегральная схема.
  • Гибридная микросхема (часто называемая микросборкой ), содержит несколько бескорпусных диодов, бескорпусных транзисторов и(или) других электронных активных компонентов. Также микросборка может включать в себя бескорпусные интегральные микросхемы. Пассивные компоненты микросборки (резисторы , конденсаторы , катушки индуктивности) обычно изготавливаются методами тонкоплёночной или толстоплёночной технологий на общей, обычно керамической подложке гибридной микросхемы. Вся подложка с компонентами помещается в единый герметизированный корпус.
  • Смешанная микросхема - кроме полупроводникового кристалла содержит тонкоплёночные (толстоплёночные) пассивные элементы, размещённые на поверхности кристалла.

Вид обрабатываемого сигнала

Технологии изготовления

Типы логики

Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

  • Микросхемы на униполярных (полевых) транзисторах - самые экономичные (по потреблению тока):
    • МОП -логика (металл-оксид-полупроводник логика) - микросхемы формируются из полевых транзисторов n -МОП или p -МОП типа;
    • КМОП -логика (комплементарная МОП-логика) - каждый логический элемент микросхемы состоит из пары взаимодополняющих (комплементарных) полевых транзисторов (n -МОП и p -МОП).
  • Микросхемы на биполярных транзисторах :
    • РТЛ - резисторно-транзисторная логика (устаревшая, заменена на ТТЛ);
    • ДТЛ - диодно-транзисторная логика (устаревшая, заменена на ТТЛ);
    • ТТЛ - транзисторно-транзисторная логика - микросхемы сделаны из биполярных транзисторов с многоэмиттерными транзисторами на входе;
    • ТТЛШ - транзисторно-транзисторная логика с диодами Шоттки - усовершенствованная ТТЛ, в которой используются биполярные транзисторы с эффектом Шоттки ;
    • ЭСЛ - эмиттерно-связанная логика - на биполярных транзисторах, режим работы которых подобран так, чтобы они не входили в режим насыщения, - что существенно повышает быстродействие;
    • ИИЛ - интегрально-инжекционная логика.
  • Микросхемы, использующие как полевые, так и биполярные транзисторы:

Используя один и тот же тип транзисторов, микросхемы могут создаваться по разным методологиям, например, статической или динамической .

КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распространёнными логиками микросхем. Где необходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость к статическому электричеству - достаточно коснуться рукой вывода микросхемы, и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но и наиболее энергопотребляющими, и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

Технологический процесс

При изготовлении микросхем используется метод фотолитографии (проекционной, контактной и др.), при этом схему формируют на подложке (обычно из кремния), полученной путём резки алмазными дисками монокристаллов кремния на тонкие пластины. Ввиду малости линейных размеров элементов микросхем, от использования видимого света и даже ближнего ультрафиолетового излучения при засветке отказались.

Следующие процессоры изготавливали с использованием УФ-излучения (эксимерный лазер ArF, длина волны 193 нм). В среднем внедрение лидерами индустрии новых техпроцессов по плану ITRS происходило каждые 2 года, при этом обеспечивалось удвоение количества транзисторов на единицу площади: 45 нм (2007), 32 нм (2009), 22 нм (2011) , производство 14 нм начато в 2014 году , освоение 10 нм процессов ожидается около 2018 года.

В 2015 году появились оценки, что внедрение новых техпроцессов будет замедляться .

Контроль качества

Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры .

Назначение

Интегральная микросхема может обладать законченной, сколь угодно сложной, функциональностью - вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

  • Фильтры (в том числе на пьезоэффекте).
  • Аналоговые умножители .
  • Аналоговые аттенюаторы и регулируемые усилители .
  • Стабилизаторы источников питания: стабилизаторы напряжения и тока .
  • Микросхемы управления импульсных блоков питания.
  • Преобразователи сигналов.
  • Схемы синхронизации .
  • Различные датчики (например, температуры).

Цифровые схемы

  • Буферные преобразователи
  • (Микро)процессоры (в том числе ЦП для компьютеров)
  • Микросхемы и модули памяти
  • ПЛИС (программируемые логические интегральные схемы)

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

  • Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения , во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.
  • Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов , позволяющих исправлять ошибки.
  • Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Аналого-цифровые схемы

  • цифро-аналоговые (ЦАП) и аналого-цифровые преобразователи (АЦП);
  • трансиверы (например, преобразователь интерфейса Ethernet );
  • модуляторы и демодуляторы ;
    • радиомодемы
    • декодеры телетекста, УКВ-радио-текста
    • трансиверы Fast Ethernet и оптических линий
    • Dial-Up модемы
    • приёмники цифрового ТВ
    • сенсор оптической «мыши»
  • микросхемы питания электронных устройств - стабилизаторы, преобразователи напряжения, силовые ключи и др.;
  • цифровые аттенюаторы ;
  • схемы фазовой автоподстройки частоты (ФАПЧ);
  • генераторы и восстановители частоты тактовой синхронизации;
  • базовые матричные кристаллы (БМК): содержит как аналоговые, так и цифровые схемы;

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия - это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса

Специфические названия

Правовая защита

Законодательство России предоставляет правовую охрану топологиям интегральных микросхем. Топологией интегральной микросхемы является зафиксированное на материальном носителе пространственно-геометрическое расположение совокупности элементов интегральной микросхемы и связей между ними (ст. 1448

СБИС

Современные интегральные микросхемы, предназначенные для поверхностного монтажа.

Советские и зарубежные цифровые микросхемы.

Интегра́льная (engl. Integrated circuit, IC, microcircuit, microchip, silicon chip, or chip), (микро )схе́ма (ИС, ИМС, м/сх ), чип , микрочи́п (англ. chip - щепка, обломок, фишка) - микроэлектронное устройство - электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус. Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) - ИС, заключённую в корпус. В то же время выражение «чип компоненты» означает «компоненты для поверхностного монтажа» в отличие от компонентов для традиционной пайки в отверстия на плате. Поэтому правильнее говорить «чип микросхема», имея в виду микросхему для поверхностного монтажа. В настоящий момент ( год) большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

История

Изобретение микросхем началось с изучения свойств тонких оксидных плёнок, проявляющихся в эффекте плохой электро-проводимости при небольших электрических напряжениях. Проблема заключалась в том, что в месте соприкосновения двух металлов не происходило электрического контакта или он имел полярные свойства. Глубокие изучения этого феномена привели к открытию диодов а позже транзисторов и интегральных микросхем.

Уровни проектирования

В настоящее время большая часть интегральных схем разрабатывается при помощи САПР , которые позволяют автоматизировать и значительно ускорить процесс получения топологических фотошаблонов.

Классификация

Степень интеграции

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом - вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

  • Генераторы сигналов
  • Аналоговые умножители
  • Аналоговые аттенюаторы и регулируемые усилители
  • Стабилизаторы источников питания
  • Микросхемы управления импульсных блоков питания
  • Преобразователи сигналов
  • Схемы синхронизации
  • Различные датчики (температуры и др.)

Цифровые схемы

  • Логические элементы
  • Буферные преобразователи
  • Модули памяти
  • (Микро)процессоры (в том числе ЦПУ в компьютере)
  • Однокристальные микрокомпьютеры
  • ПЛИС - программируемые логические интегральные схемы

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

  • Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (резистивном) состоянии.
  • Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например 2,5 - 5 В) и низкого (0 - 0,5 В) уровня. Ошибка возможна при таких помехах, когда высокий уровень воспринимается как низкий и наоборот, что мало вероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов , позволяющих исправлять ошибки.
  • Большое отличие сигналов высокого и низкого уровня и достаточно широкий интервал их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора и настройки цифровых устройств.
Loading...Loading...