Западные гис. Геоинформационные технологии, основные характеристики современных гис Военные корни гражданской ГИС

Геоинформационные технологии можно определить как совокупность программно-технологических, методических средств получения новых видов информации об окружающем мире. Они предназначены для повышения эффективности: процессов управления, хранения и представления информации, обработки и поддержки принятия решений. Это заключается во внедрении геоинформационных технологий в науку, производство, образование и применение в практической деятельности получаемой информации об окружающей реальности.

Геоинформационные технологии являются новыми информационными технологиями, направленными на достижение различных целей, включая информатизацию производственно-управленческих процессов. Особенностью геоинформационных систем (далее - ГИС) является то, что как информационные системы они являются результатом эволюции этих систем и поэтому включают в себя основы построения и функционирования информационных систем. ГИС как система включает множество взаимосвязанных элементов, каждый из которых связан прямо или косвенно с каждым другим элементом, а два любые подмножества этого множества не могут быть независимыми, не нарушая целостность, единство системы.

Еще одной особенностью ГИС является то, что она является интегрированной информационной системой. Интегрированные системы построены на принципах интеграции технологий различных систем. Они зачастую применяются настолько в разных областях, что их название часто не определяет все их возможности и функции. По этой причине не следует связывать ГИС с решением задач только геодезии или географии. «Гео» в названии геоинформационных систем и технологий определяет объект исследований, а не предметную область использования этих систем.

Интеграция ГИС с другими информационными системами порождает их многоаспектность. В ГИС осуществляется комплексная обработка информации от сбора данных до ее хранения, обновления и представления, поэтому следует рассмотреть ГИС с различных позиций.

Как системы управления ГИС предназначены для обеспечения процесса принятия решений по оптимальному управлению землями и ресурсами, городским хозяйством, организации транспорта и розничной торговли, использованию океанов или других пространственных объектов. В отличие от информационных систем, в ГИС появляется множество новых технологий пространственного анализа данных, объединенных с технологиями электронного офиса и оптимизации решений на этой основе. В силу этого ГИС является эффективным методом преобразования и синтеза разнообразных данных для задач управления.

Как геосистемы ГИС интегрируют технологии сбора информации таких систем, как: географические информационные системы, системы картографической информации, автоматизированные системы картографирования, автоматизированные фотограмметрические системы, земельные информационные системы, автоматизированные кадастровые системы и т.п.

Как системы баз данных ГИС характерны широким набором данных, собираемых с помощью разных методов и технологий. При этом следует подчеркнуть, что они объединяют в себе возможности текстовых и графических баз данных.

Как системы моделирования ГИС использует максимальное количество методов и процессов моделирования, применяемых в других информационных системах и в первую очередь в САПР.

Как системы получения проектных решений ГИС во многом используют концепции и методы автоматизированного проектирования и решают ряд специальных проектных задач, которые в типовом автоматизированном проектировании не встречаются.

Как системы представления информации ГИС являются развитием автоматизированных систем документационного обеспечения с использованием современных технологий мультимедиа. Они обладают средствами деловой графики и статистического анализа и дополнительно к этому средствами тематического картографирования. Именно эффективность последнего обеспечивает разнообразное решение задач в разных отраслях при использовании интеграции данных на основе картографической информации.

Как прикладные системы ГИС не имеют себе равных по широте, так как применяются в транспорте, навигации, геологии, географии, военном деле, топографии, экономике, экологии и т.д.

Как системы массового использования ГИС позволяют использовать картографическую информацию на уровне деловой графики, что делает их доступными любому школьнику или бизнесмену, а не только специалисту географу. Именно поэтому принятие многих решений на основе ГИС-технологий не сводится к созданию карт, а лишь использует картографические данные.

Организация данных в ГИС. Тематические данные хранятся в ГИС в виде таблиц, поэтому проблем с их хранением и организацией в базах данных не возникает. Наибольшие проблемы представляет хранение и визуализация графических данных.

Основным классом данных ГИС являются координатные данные, содержащие геометрическую информацию и отражающие пространственный аспект. Основные типы координатных данных: точка (узлы, вершины), линия (незамкнутая), контур (замкнутая линия), полигон (ареал, район). На практике для построения реальных объектов используют большее число данных (например, висячий узел, псевдоузел, нормальный узел, покрытие, слой и др.). На рис. 3.1 показаны основные из рассмотренных элементов координатных данных .

Рассмотренные типы данных имеют большее количество разнообразных связей, которые можно условно разделить на три группы:

  • взаимосвязи для построения сложных объектов из простых элементов;
  • взаимосвязи, вычисляемые по координатам объектов;
  • взаимосвязи, определяемые с помощью специального описания и семантики при вводе данных.

В общем случае модели пространственных (координатных) данных могут иметь векторное или растровое (ячеистое) представление, содержать или не содержать топологические характеристики. Этот подход позволяет классифицировать модели по трем типам: растровая модель; векторная нетопологическая модель; векторная топологическая модель. Все эти модели взаимно преобразуемы. Тем не менее при получении каждой из них необходимо учитывать их особенности. В ГИС форме представления координатных данных соответствуют два основных подкласса моделей: векторные и растровые (ячеистые или мозаичные ). Возможен класс моделей, которые содержат характеристики как векторов, так и мозаик. Они называются гибридными моделями.

Рис. 3.1.

Графическое представление какой-либо ситуации на экране компьютера подразумевает отображение на экране различных графических образов. Сформированный графический образ на экране ЭВМ состоит из двух различных с точки зрения среды хранения частей - графической «подложки» или графического фона и других графических объектов. По отношению к этим другим графическим образам «образ- подложка» является «площадным», или пространственным двухмерным изображением. Основной проблемой при реализации геоинформаци- онных приложений является трудность формализованного описания конкретной предметной области и ее отображения на электронной карте.

Таким образом, геоинформационные технологии предназначены для широкого внедрения в практику методов и средств информационного взаимодействия над пространственно-временными данными, представляемыми в виде системы электронных карт, и предметно-ориентированных сред обработки разнородной информации для различных категорий пользователей.

Рассмотрим более подробно основные графические модели.

Векторные модели широко применяются в ГИС. Они строятся на векторах, занимающих часть пространства, в отличие от занимающих все пространство растровых моделей. Это определяет их основное преимущество - требование на порядки меньшей памяти для хранения и меньших затрат времени на обработку и представление, а главное - более высокая точность позиционирования и представления данных. При построении векторных моделей объекты создаются путем соединения точек прямыми линиями, дугами окружностей, полилиниями. Площадные объекты - ареалы задаются наборами линий.

Векторные модели используются преимущественно в транспортных, коммунальных, маркетинговых приложениях ГИС. Системы ГИС, работающие в основном с векторными моделями, получили название векторных ГИС. В реальных ГИС имеют дело не с абстрактными линиями и точками, а с объектами, содержащими линии и ареалы, занимающими пространственное положение, а также со сложными взаимосвязями между ними. Поэтому полная векторная модель данных ГИС отображает пространственные данные как совокупность следующих основных частей: геометрические (метрические) объекты (точки, линии и полигоны); атрибуты - признаки, связанные с объектами; связи между объектами. Векторные модели (объектов) используют в качестве элементарной модели последовательность координат, образующих линию. Линией называют границу, сегмент, цепь или дугу. Основные типы координатных данных в классе векторных моделей определяются через базовый элемент линия следующим образом. Точка определяется как выродившаяся линия нулевой длины, линия - как линия конечной длины, а площадь представляется последовательностью связанных между собой отрезков. Каждый участок линии может являться границей для двух ареалов либо двух пересечений (узлов). Отрезок общей границы между двумя пересечениями (узлами) имеет разные названия, которые являются синонимами в предметной области ГИС. Специалисты по теории графов предпочитают слову «линия» термин «ребро», а для обозначения пересечения употребляют термин «вершина». Национальным стандартом США официально санкционирован термин «цепь». В некоторых системах (Arclnfo , GeoDraw ) используется термин «дуга». В отличие от обычных векторов в геометрии, дуги имеют свои атрибуты. Атрибуты дуг обозначают полигоны по обе стороны от них. По отношению к последовательному кодированию дуги эти полигоны именуются левый и правый. Понятие дуги (цепи, ребра) является фундаментальным для векторных ГИС.

Векторные модели получают разными способами. Один из наиболее распространенных - векторизация сканированных (растровых) изображений.

Векторизация - процедура выделения векторных объектов с растрового изображения и получение их в векторном формате. Для векторизации необходимо высокое качество (отчетливые линии и контуры) растровых образов. Чтобы обеспечить требуемую четкость линий иногда приходится заниматься улучшением качества изображения.

При векторизации возможны ошибки, исправление которых осуществляется в два этапа:

  • 1) корректировка растрового изображения до его векторизации;
  • 2) корректировка векторных объектов.

Векторные модели с помощью дискретных наборов данных отображают непрерывные объекты или явления. Следовательно, можно говорить о векторной дискретизации. При этом векторное представление позволяет отразить большую пространственную изменчивость для одних районов, чем для других, по сравнению с растровым представлением, что обусловлено более четким показом границ и их меньшей зависимостью от исходного образа (изображения), чем при растровом отображении. Это типично для социальных, экономических, демографических явлений, изменчивость которых в ряде районов более интенсивна.

Некоторые объекты являются векторными по определению, например границы соответствующего земельного участка, границы районов и т.д. Поэтому векторные модели обычно используют для сбора данных координатной геометрии (топографические записи), данных об административно-правовых границах и т.п.

Особенности векторных моделей: в векторных форматах набор данных определен объектами базы данных. Векторная модель может организовывать пространство в любой последовательности и дает «произвольный доступ» к данным. В ней легче осуществляются операции с линейными и точечными объектами, например, анализ сети - разработка маршрутов движения по сети дорог, замена условных обозначений. В растровых форматах точечный объект должен занимать целую ячейку. Это создает ряд трудностей, связанных с соотношением размеров растра и размера объекта.

Что касается точности векторных данных, то здесь можно говорить о преимуществе векторных моделей перед растровыми, так векторные данные могут кодироваться с любой мыслимой степенью точности, которая ограничивается лишь возможностями метода внутреннего представления координат. Обычно для представления векторных данных используется 8 или 16 десятичных знаков (одинарная или двойная точность). Только некоторые классы данных, получаемых в процессе измерений, соответствуют точности векторных данных: это данные, полученные точной съемкой (координатная геометрия); карты небольших участков, составленные по топографическим координатам и политические границы, определенные точной съемкой.

Не все природные явления имеют характерные четкие границы, которые можно представить в виде математически определенных линий. Это обусловлено динамикой явлений или способами сбора пространственной информации. Почвы, типы растительности, склоны, место обитания диких животных - все эти объекты не имеют четких границ. Обычно линии на карте имеют толщину 0,4 мм и, как часто считается, отражают неопределенность положения объекта. В растровой системе эта неопределенность задается размером ячейки. Поэтому следует помнить, что в ГИС действительное представление о точности дают размер растровой ячейки и неопределенность положения векторного объекта, а не точность координат. Для анализа связей в векторных моделях необходимо рассмотреть их топологические свойства, т.е. рассмотреть топологические модели, которые являются разновидностью векторных моделей данных.

В растровых моделях дискретизация осуществляется наиболее простым способом - весь объект (исследуемая территория) отображается в пространственные ячейки, образующие регулярную сеть. Каждой ячейке растровой модели соответствует одинаковый по размерам, но разный по характеристикам (цвет, плотность) участок поверхности. Ячейка модели характеризуется одним значением, являющейся средней характеристикой участка поверхности. Эта процедура называется пикселизацией. Растровые модели делятся на регулярные, нерегулярные и вложенные (рекурсивные или иерархические) мозаики. Плоские регулярные мозаики бывают трех типов: квадрат (рис. 3.2), треугольник и шестиугольник (рис. 3.3).


Рис. 3.2.


Рис. 3.3.

Квадратная форма удобна при обработке больших объемов информации, треугольная - для создания сферических поверхностей. В качестве нерегулярных мозаик используют треугольные сети неправильной формы (Triangulated Irregular Network - TIN) и полигоны Тиссена (рис. 3.4). Они удобны для создания цифровых моделей отметок местности по заданному набору точек.

Таким образом, векторная модель содержит информацию о местоположении объекта, а растровая - о том, что расположено в той или иной точке объекта. Векторные модели относятся к бинарным или ква- зибинарным.


Рис. 3.4.

Если векторная модель дает информацию о том, где расположен тот или иной объект, то растровая - информацию о том, что расположено в той или иной точке территории. Это определяет основное назначение растровых моделей - непрерывное отображение поверхности. В растровых моделях в качестве атомарной модели используют двухмерный элемент пространства - пиксель (ячейка). Упорядоченная совокупность атомарных моделей образует растр, который, в свою очередь, является моделью карты или геообъекта. Векторные модели относятся к бинарным или квазибинарным. Растровые позволяют отображать полутона и цветовые оттенки. Как правило, каждый элемент растра или каждая ячейка должны иметь лишь одно значение плотности или цвета. Это применимо не для всех случаев. Например, когда граница двух типов покрытий может проходить через центр элемента растра, элементу дается значение, характеризующее большую часть ячейки или ее центральную точку.

Ряд систем позволяет иметь несколько значений для одного элемента растра. Для растровых моделей существует ряд характеристик: разрешение, значение, ориентация, зоны, положение.

Разрешение - минимальный линейный размер наименьшего участка отображаемого пространства (поверхности), отображаемый одним пикселем. Пиксели обычно представляют собой прямоугольники или квадраты, реже используются треугольники и шестиугольники. Более высоким разрешением обладает растр с меньшим размером ячеек. Высокое разрешение подразумевает обилие деталей, множество ячеек, минимальный размер ячеек.

Значение - элемент информации, хранящийся в элементе растра (пикселе). Поскольку при обработке применяют типизированные данные, т.е. необходимость определить типы значений растровой модели. Тип значений в ячейках растра определяется как реальным явлением, так и особенностями ГИС. В частности, в разных системах можно использовать разные классы значений: целые числа, действительные (десятичные) значения, буквенные значения. Целые числа могут служить характеристиками оптической плотности или кодами, указывающими на позицию в прилагаемой таблице или легенде. Например, возможна следующая легенда, указывающая наименование класса почв: О - пустой класс, 1 - суглинистые, 2 - песчаные, 3 - щебнистые и т.п.

Ориентация - угол между направлением на север и положением колонок растра.

Зона растровой модели включает соседствующие друг с другом ячейки, имеющие одинаковое значение. Зоной могут быть отдельные объекты, природные явления, ареалы типов почв, элементы гидрографии и т.п. Для указания всех зон с одним и тем же значением используют понятие «класс зон». Естественно, что не во всех слоях изображения могут присутствовать зоны. Основные характеристики зоны - ее значение и положение.

Буферная зона - зона, границы которой удалены на известное расстояние от любого объекта на карте. Буферные зоны различной ширины могут быть созданы вокруг выбранных объектов на базе таблиц сопряженных характеристик.

Положение обычно задается упорядоченной парой координат (номер строки и номер столбца), которые однозначно определяют положение каждого элемента отображаемого пространства в растре. Проводя сравнение векторных и растровых моделей, отметим удобство векторных для организации и работы со взаимосвязями объектов. Тем не менее, используя простые приемы, например, включая взаимосвязи в таблицы атрибутов, можно организовать взаимосвязи и в растровых системах.

Необходимо остановиться на вопросах точности отображения в растровых моделях. В растровых форматах в большинстве случаев неясно, относятся ли координаты к центральной точке пикселя или к одному из его углов. Поэтому точность привязки элемента растра определяют как 1/2 ширины и высоты ячейки.

Растровые модели имеют следующие достоинства:

  • растр не требует предварительного знакомства с явлениями, данные собираются с равномерно расположенной сети точек, что позволяет в дальнейшем на основе статистических методов обработки получать объективные характеристики исследуемых объектов. Благодаря этому растровые модели могут использоваться для изучения новых явлений, о которых не накоплен материал. В силу простоты этот способ получил наибольшее распространение;
  • растровые данные проще для обработки по параллельным алгоритмам и этим обеспечивают более высокое быстродействие по сравнению с векторными;
  • некоторые задачи, например создание буферной зоны, намного проще решать в растровом виде;
  • многие растровые модели позволяют вводить векторные данные, в то время как обратная процедура весьма затруднительна для векторных моделей;
  • процессы растеризации намного проще алгоритмически, чем процессы векторизации, которые зачастую требуют экспертных решений.

Цифровая карта может быть организована в виде множества слоев (покрытий или карт подложек). Слои в ГИС представляют набор цифровых картографических моделей, построенных на основе объединения (типизации) пространственных объектов, имеющих общие функциональные признаки. Совокупность слоев образует интегрированную основу графической части ГИС. Пример слоев интегрированной ГИС представлен на рис. 3.5.

Рис. 3.5.

Важным моментом при проектировании ГИС является размерность модели. Применяют двухмерные модели координат (2D) и трехмерные (3D). Двухмерные модели используются при построении карт, а трехмерные - при моделировании геологических процессов, проектировании инженерных сооружений (плотин, водохранилищ, карьеров и др.), моделировании потоков газов и жидкостей.

Существует два типа трехмерных моделей:

  • 1) псевдотрехмерные, когда фиксируется третья координата;
  • 2) истинное трехмерное представление.

Большинство современных ГИС осуществляют комплексную обработку информации:

  • сбор первичных данных;
  • накопление и хранение информации;
  • различные виды моделирования (семантическое, имитационное, геометрическое, эвристическое);
  • автоматизированное проектирование;
  • документационное обеспечение.

Множество задач, возникающих в жизни, привело к созданию различных ГИС, которые могут классифицироваться по следующим признакам:

  • 1) по функциональным возможностям :
    • полнофункциональные ГИС общего назначения,
    • специализированные ГИС ориентированы на решение конкретной задачи в какой-либо предметной области,
    • информационно-справочные системы для домашнего и информационно-справочного пользования.

Функциональные возможности ГИС определяются также архитектурным принципом их построения:

  • закрытые системы - не имеют возможностей расширения, они способны выполнять только тот набор функций, который однозначно определен на момент покупки,
  • открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования) ;
  • 2) пространственному (территориальному ) охвату :
    • глобальные (планетарные),
    • общенациональные,
    • региональные,
    • локальные (в том числе муниципальные);
  • 3) проблемно-тематической ориентации :
    • общегеографические,
    • экологические и природопользовательские,
    • отраслевые (водных ресурсов, лесопользования, геологические, туризма и т.д.);
  • 4) способу организации географических данных :
    • векторные,
    • растровые,
    • векторно-растровые ГИС.

В качестве источников данных для формирования ГИС служат:

  • картографические материалы (топографические и общегеографические карты, карты административно-территориального деления, кадастровые планы и др.). Сведения, получаемые с карт, имеют территориальную привязку, поэтому их удобно использовать в качестве базового слоя ГИС. Если нет цифровых карт на исследуемую территорию, тогда графические оригиналы карт преобразуются в цифровой вид;
  • данные дистанционного зондирования (далее - ДДЗ) все шире используются для формирования баз данных ГИС. К ДДЗ прежде всего относят материалы, получаемые с космических носителей. Для дистанционного зондирования применяют разнообразные технологии получения изображений и передачи их на Землю, носители съемочной аппаратуры (космические аппараты и спутники) размещают на разных орбитах, оснащают разной аппаратурой. Благодаря этому получают снимки, отличающиеся разным уровнем обзорности и детальности отображения объектов природной среды в разных диапазонах спектра (видимый и ближний инфракрасный, тепловой инфракрасный и радиодиапазон). Все это обуславливает широкий спектр экологических задач, решаемых с применением ДДЗ. К методам дистанционного зондирования относятся аэро- и наземные съемки и другие неконтактные методы, например гидроакустические съемки рельефа морского дна. Материалы таких съемок обеспечивают получение как количественной, так и качественной информации о различных объектах природной среды;
  • материалы полевых изысканий территорий включают данные топографических, инженерно-геодезических изысканий, кадастровой съемки, геодезические измерения природных объектов, выполняемые нивелирами, теодолитами, электронными тахеометрами, GPS- приемниками, а также результаты обследования территорий с применением геоботанических и других методов, например, исследования по перемещению животных, анализ почв и др.;
  • статистические данные содержат данные государственных статистических служб по самым разным отраслям народного хозяйства, а также данные стационарных измерительных постов наблюдений (гидрологические и метеорологические данные, сведения о загрязнении окружающей среды и т.д.));
  • литературные данные (справочные издания, книги, монографии и статьи, содержащие разнообразные сведения по отдельным типам географических объектов).

В ГИС редко используется только один вид данных, чаще всего это сочетание разнообразных данных на какую-либо территорию.

Основные области использования ГИС:

  • электронные карты;
  • городское хозяйство;
  • государственный земельный кадастр;
  • экология;
  • дистанционное зондирование;
  • экономика;
  • специальные системы военного назначения.

На практике наиболее хорошо себя зарекомендовали для работы с мелкомасштабными «природными» картами (геология, сельское хозяйство, навигация, экология и т.п.) такие ГИС, как Arclnfo и ArcView GIS. Обе системы разработаны американской компанией ESRI (www. esri.com, www.dataplus.ru) и весьма распространены в мире.

Из относительно простых западных ГИС, которые начинали свою родословную с анализа территорий в объеме, необходимом для бизнеса и относительно простых применений, можно назвать систему Maplnfo, которая также распространена в мире весьма широко. Эта система очень быстро прогрессирует и сегодня может составить конкуренцию самым развитым ГИС.

Корпорацией Intergraph (www.intergraph.com) поставляется ГИС MGE, базирующаяся на основе AutoCAD-подобной системы MicroStation, выпускаемой в свою очередь компанией Bendy. Система MGE представляет собой целое семейство различных программных продуктов, помогающих решать набольшее множество задач, существующих в области геоинформатики.

Все указанные продукты имеют и интернет-ГИС-серверы, позволяющие публиковать цифровые карты в Интернете. Правда, приходится говорить только о вьюерах, поскольку обеспечить сегодня редактирование топологических карт со стороны удаленного клиента Интернета нельзя по причине недостаточной развитости как ГИС-, так и интернет- технологий.

Буквально недавно вышла на рынок ГИС и Microsoft, подтвердив тем самым, что ГИС станет в ближайшем будущем такой системой, которую должен иметь на своем компьютере всякий мало-мальски уважающий себя пользователь, как он имеет сегодня у себя Excel или Word. Microsoft выпустила продукт MapPoint (Microsoft MapPoint 2000 Business Mapping Software ), который войдет в состав Office 2000. Эта компонента офисного продукта будет ориентирована в основном на бизнес-планирование и анализ.

Повторением концепции Arclnfo, но сильно уступающей последней по функциональной полноте является отечественная система GeoDraw, разработанная в ЦГИ ИГРАН (г. Москва). Возможности ее ограничены сегодня в основном мелкомасштабными картами. С нашей точки зрения, значительно «сильнее» здесь выглядит «старейшина» отечественной геоинформатики - ГИС Sinteks ABRIS. В последней хорошо представлены функции по анализу пространственной информации.

В геологии сильны позиции ГИС ПАРК (Ланэко, г. Москва), в которой также реализованы уникальные методы моделирования соответствующих процессов.

Наиболее «продвинутыми» в области представления и дежурства крупномасштабных насыщенных карт городов и генеральных планов крупных предприятий можно считать две отечественные системы: GeoCosm (ГЕОИД, г. Геленджик) и «ИнГео» (ЦСИ «Интегро», г. Уфа, www.integro.ru). Эти системы - одни из самых молодых и потому разрабатывались сразу с использованием самых современных технологий. А систему «ИнГео» разрабатывали даже не столько геодезисты, сколько специалисты, относящие себя к профессионалам в области имитационного моделирования и кадастровых систем.

В целом в России едва ли не в каждой организации создают свою ГИС. Однако, этот процесс - весьма непростой, и вероятность его завершения неудачно несравненно более высока, чем вероятность беспроблемной реализации, не говоря уже о возможности выхода коммерческого продукта, допускающего отчуждение от разработчиков.

Для эффективного управления регионами необходимо владеть достоверной и комплексной информацией об их экономическом состоянии и потенциале, в том числе о наличии и размещении полезных ископаемых, лесных, водных и земельных ресурсов, об экономическом развитии территорий, о размещении предприятий промышленности и сельского хозяйства, расселении населения, развитии дорожной сети, средств связи и других компонентов инфраструктуры, об экологическом состоянии территорий и другой информацией, необходимой для обоснованного принятия решений.

В России выделяются следующие территориальные уровни применения ГИС:

Глобальный уровень – Россия на глобальном и евразийском фоне масштаб 1:45 000 000 – 1:100 000 000;

Всероссийский уровень – вся территория страны, включая прибрежные акватории и приграничные районы, масштаб 1:2 500 000 – 1:20 000 000;

Региональный уровень – крупные природные и экономические регионы, субьекты федерации, масштаб 1:500 000 – 1:4 000 000;

Локальный уровень – области, районы, национальные парки, ареал кризисных ситуаций – 1:50 000 – 1 000 000;

Муниципальный уровень – города, городские районы, пригородные зоны, масштаб 1:50 000 и крупнее.

К проблемам ГИС Российской Федерации следует отнести:

Отсутствует, соответствующая современным требованиям система обеспечения органов государственной власти информацией, необходимой для эффективного управления территориальным развитием;

Низкий уровень автоматизации сбора, обработки, обновления и передачи информации, наличие межведомственных барьеров, что затрудняет своевременное получение информации органами государственной власти. Существующие в настоящее время ведомственные системы сбора и анализа данных по отдельным видам объектов управления, организационно и методически разрознены, что не позволяет эффективно взаимодействовать при принятии и обосновании конкретных управленческих решений по развитию территорий. Любой проект ГИС, разработанный на районном, городском или региональном уровне сталкивается с необходимостью существенных затрат по сбору первичных данных. Для большинства пользователей ГИС затраты на сбор данных являются чрезмерно большими (до 80% от общего объема затрат);

Отсутствие реальных технологий обновления данных. Обновление данных также требует существенных материальных затрат, однако без развитой системы обновления данных любая ГИС нежизнеспособна. Поэтому, создавая ГИС, необходимо тщательно отработать технологию обновления данных. Развитие секторов рынка, связанных с получением и использованием данных зондирования и других геоданных не возможно без решения задач автоматизированной актуализации данных;

Отсутствуют национальные стандарты на классификацию и кодирование топографической информации, на форматы обмена цифровыми топографическими данными, что может потребовать серьезных дополнительных затрат при объединении локальных, например ведомственных ГИС в объщегосударственную ГИС.

Государственная стратегия Российской Федерации в области ГИС определена постановлением Правительства Российской Федерации от 16 января 1995 г. N40 "Об организации работ по созданию геоинформационной системы органов государственной власти". Концепция создания ГИС для органов государственной власти региона (области) предусматривает выполнение мероприятий по внедрению в органы управления современных геоинформационных технологий для комплексного анализа многоаспектной, разнородной информации при решении задач управления развитием региона (области) и ее территорий, по формированию единого геоинформационного пространства.

В настоящее время более 100 организаций и фирм распространяет в России отечественные и зарубежные системы для создания ГИС-технологий. Эти системы различаются как назначением, функциональными возможностями, так и требуемыми вычислительными ресурсами и стоимостью. Большинство инструментальных систем ориентированы на использование PC.

В зависимости от широты возможностей, ГИС общего назначения разделяются на полнофункциональные системы и системы картографической визуализации. Системы картографической визуализации называются настольными или персональными геоинформационными системами, обладают меньшей сложностью и стоимостью, ориентированы на вычислительные ресурсы персональных компьютеров, хотя имеют ограниченные аналитические возможности и слабые возможности редактирования картографической основы. Полнофункциональные ГИС сложны, удовлетворительно функционируют в полном объеме только на рабочих станциях и позволяют создавать проблемно-ориентированные геоинформационные системы с развитыми средствами пространственного анализа, что значимо, например для городских и муниципальных служб при решении задач в области экологии.

К наиболее развитым полнофункциональным ГИС относятся программные продукты фирмы ESRI США (ARC/INFO), фирмы Micro-station США (MGE Intergraph) и пакет фирмы Siemens Nixdorf Германия (SICAD). Лидером в области систем обработки аэрокосмических снимков считается система ERDAS Imagine США. В числе отечественных ГИС - векторный топологический редактор GeoDraw и средство композиционного построения цифровых карт и их анализа GeoGraph.

В списке настольных ГИС - программные средства ARC View (ESRI) и Maplnfo. Например, ARC View позволяет создавать самостоятельные проблемно-ориентированные прикладные системы и решать задачи муниципального управления, градостроительства, экологии. На ее основе создается ГИС мониторинга лесных пожаров России информационная система экологического мониторинга г. Москвы. Она применяется также в информационной системе МЧС России. Система ARC View GIS реализует объектно-ориентированный подход к управлению географической информацией и все более приближается по своим функциям к возможностям полнофункциональных систем, сохраняя при этом все преимущества настольной ГИС. Она позволяет выполнять анализ информации с построением графиков и диаграмм, преобразование картографических проекций непосредственно в процессе работы с картой, комбинации сложного логического, пространственного запросов, запросы через таблицы, диаграммы и графики.

ГИС России как система и ее методология совершенствуются и развиваются в следующих направлениях:

Развитие теории и практики информационных систем;

Изучение и обобщение опыта работы с пространственными данными;

Исследование и разработка концепций создания системы пространственно-временных моделей;

Совершенствование технологий автоматизированного изготовления электронных и цифровых карт;

Разработка технологий визуальной обработки данных;

Разработка методов поддержки принятия решений на основе интегрированной пространственной информации;

Интеллектуализация ГИС.

Геомаркетинг

Геомаркетинг- это понятие, обьединяющее в себе некий комплекс инструментов и методов по сбору, обработке, анализу и визуализации пространственной информации для оперативных и стратегических задач компаний.

Методология геомаркетинга основана на методологии информационного маркетинга. Геомаркетинговые информационные системы возникли на основе интеграции с маркетинговыми информационными системами.

Геомаркетинговые информационные системы работают с пространственно-локализованными данными, что обеспечивает:

Выявление скрытых закономерностей поведения спроса на продукцию в пространственно-временном разрезе;

Возможность применения пространственного анализа объектов для выявления их свойств и отношений не видимых при обычном анализа, например по табличным данным;

Глобальную интеграцию данных, позволяющую в совокупности, комплексно изучать объекты и явления;

Применение визуальных методов представления и обработки статистической информации.

Другими словами, геомаркетинг выгодно применять как эффективную рыночную информационную технологию.

Виды геомаркетинга:

- геомаркетинг мест, включает геомаркетинг жилья (застройка, предложения на продажу или внаем…), зон хозяйственной застройки (освоение участков, сдача в аренду и продажа заводов, магазинов и т.д.), геомаркетинг инвестиций в земельную собственность, мест отдыха и туризма;

- природоресурсный геомаркетинг включает в себя хозяйственное освоение, продажу и привлечение инвестиций в природоресурсные региональные образования;

- стимулирующий геомаркетинг совокупностью мер преодолевает негативное отношение на товары и услуги ГИС;

- развивающий геомаркетинг развивает спрос на новые товары ГИС (отдельных лиц, организаций и в целом объщества);

- политический гаомаркетинг направлен не на формирование или удовлетворение спроса на конкретную продукцию, а на удовлетворение политических желаний.

Задачи, решаемые геомаркетингом для территориально-распределенной торгово-розничной сети:

Оптимальное планирование сети торговой розницы и сервиса;

Открытие торговой точки в оптимальном месте, с учетом критериев доступности, максимального охвата потребителей, их проживания и потоков;

Управление ассортиментом товаров и продвижением торгового предприятия;

Оперативный сбор и обновление информации о рынках и конкурентных предприятиях.

При выборе нового места расположения торгового предприятия проводится комплекс геоинформационных, экономических и статистических анализов с использованием космических снимков Земли высокого разрешения. Учитываются существующая инфраструктура компании, внешние социально-экономические показатели, конкурентная среда и др.:

1. Оценка привлекательности места.

1.1 Общая численность населения по зонам транспортной доступности.

1.2 Численность экономически активного населения (16-60 лет).

1.3 Оценка уровня дохода жителей внутри зоны 15-ти минутной транспортной доступности.

1.4 Оценка транспортной сети и автомобильных потоков.

1.5 Оценка пешеходных потоков.

2. Конкурентный анализ внутри зоны 15-ти минутной доступности.

2.1 Оценка основных конкурентов по зонам.

2.2 Сравнение плотности конкурентов в зависимости от зон. Описание конкурентной ситуации.

3. Прогноз развития функционального назначения территорий внутри зон.

3.1 Оценка инфраструктуры на настоящий момент.

3.2 Оценка интенсивности жилого строительства.

3.3 Оценка интенсивности строительства объектов торговли, развлечения и спорта.

3.4 Оценка развития инфраструктуры.

3.5 Прогноз изменения количества потребителей.

К примеру, при оценке привлекательности места стоит обратить внимание на следующие особенности прилегающей к магазину территории:

Направление потоков движения жителей и возможность перенаправить эти потоки создав, например дополнительные пешеходные переходы и светофоры, одностороннее движение автомобилей и т.п.;

Наличие удобного подъезда и полноценной парковки в соответствии с форматом магазина;

Наличие тротуаров, газонов, уличного освещения и т. д. в соответствии с имиджем открывающегося магазина;

Удобство подхода (подъезда) к магазину покупателей – исключение конкуренции с подъезжающими автомобилями чужих клиентов и жителей близлежащих домов;

Удобство для разгрузочно-погрузочных работ;

Наличие участков, пригодных для выносной торговли и проведения акций для привлечения интереса покупателей;

Отсутствие нежелательных соседствующих объектов.

8. Геоинформационные технологии. Геоматика.

ГИС - технологии - технологическая основа создания географических информационных систем, позволяющая реализовать их функциональные возможности. В самом общем виде ГИС - технологии могут быть подразделены на программное (ПО) и компьютерно-техническое обеспечение. Геоинформатикой и геоинформационными технологиями занимаются большое число специалистов. Часть из них занимается созданием общего и специализированного программного обеспечения, другая - разработкой приемов применения ГИС - технологий в практике. Основная же часть специалистов занимается практической работой в различных отраслях.

Геоинформационные технологии можно определить как совокупность программно-технологических средств получения новых видов информации об окружающем мире. Геоинформационные технологии предназначены для повышения эффективности: процессов управления, хранения и представления информации, обработки и поддержки принятия решений. ГИС имеет ряд особенностей, которые необходимо учитывать при изучении этих систем. Одна из особенностей ГИС и геоинформационных технологий состоит в том, что они являются элементами информатизации общества. Это заключается во внедрении ГИС и геоинформационных технологий в науку, производство, образование и применение в практической деятельности получаемой информации об окружающей реальности. Геоинформационные технологии являются новыми информационными технологиями, направленными на достижение различных целей, включая информатизацию производственно-управленческих процессов.

Еще одной особенностью ГИС является то, что она является интегрированной информационной системой. Интегрированные системы построены на принципах интеграции технологий различных систем. Они зачастую применяются настолько в разных областях, что их название часто не определяет все их возможности и функции.

К техническим относят автоматизированные системы научных исследований (АСНИ), системы автоматизированного проектирования (САПР), гибкие производственные системы (ГПС), робототехнические комплексы (РТК) и др.

В настоящее время в соответствии с требованиями новых информационных технологий создаются и функционируют многие системы управления, связанные с необходимостью отображения информации на электронной карте.

Эти системы управления регулируют деятельность технических и социальных систем, функционирующих в некотором операционном пространстве (географическом, экономическом и т.п.) с явно выраженной пространственной природой. При решении задач социального и технического регулирования в системах управления используется масса пространственной информации: топография, гидрография, инфраструктура, коммуникации, размещение объектов.

Геоинформационные технологии предназначены для широкого внедрения в практику методов и средств работы с пространственно-временными данными, представляемыми в виде системы электронных карт, и предметно-ориентированных сред обработки разнородной информации для различных категорий пользователей.

Основным классом данных геоинформационных систем (ГИС) являются координатные данные, содержащие геометрическую информацию и отражающие пространственный аспект. Основные типы координатных данных: точка (узлы, вершины), линия (незамкнутая), контур (замкнутая линия), полигон (ареал, район). На практике для построения реальных объектов используют большее число данных (например, висячий узел, псевдоузел, нормальный узел, покрытие, слой и др.).

Геоинформационные технологии

ГИС, или Географические Информационные Системы - это компьютерные системы, позволяющие эффективно работать с пространственно - распределенной информацией. Они являются закономерным расширением концепции Баз Данных, дополняя их наглядностью представления и возможностью решать задачи пространственного анализа.

Практически в любой сфере деятельности мы встречаемся с информацией такого рода, представленной в виде карт, планов, схем, диаграмм и пр. Это может быть схема метро или план здания, карта экологического мониторинга территории или схема взаимосвязей между офисами компании, атлас земельного кадастра или карта природных ресурсов и многое, многое другое. ГИС дает возможность накапливать и анализировать подобную информацию, оперативно находить нужные сведения и отображать их в удобном для использования виде. Применение ГИС-технологий позволяет резко увеличить оперативность и качество работы с пространственно - распределенной информацией по сравнению с традиционными "бумажными" методами.

Преимущества геоинформационных технологий. Используя ГИС-технологии, вы получаете возможность: значительно повысить оперативность всех этапов работы с пространственно-распределенными данными, начиная от ввода исходной информации, ее анализа и до выработки конкретного решения; использовать для ввода и обновления информации в базе данных современные электронные средства геодезии и системы глобального позиционирования (GPS), а значит - постоянно иметь самую точную и свежую информацию; заручиться высокой компетенцией специалистов, разрабатывающих программное обеспечение для ГИС-систем; для того, чтобы использовать, например, программы расчета распространения загрязнений, не нужно иметь математического образования.

Области применения геоинформационных технологий. Области применения ГИС сегодня крайне разнообразны: землеустройство, контроль ресурсов, экология, муниципальное управление, транспорт, экономика, социальные задачи и многое другое. В России происходит взрывной рост интереса к данным технологиям.

Традиционно ГИС - технологии применяются в земельном кадастре, кадастре природных ресурсов, экологии, сфере работы с недвижимостью и других областях, требующих оперативного управления ресурсами и принятия решений. Сейчас все шире начинают внедряться ГИС-системы массового пользования, типа электронных планов города, схем движения транспорта и т. п. По некоторым оценкам до 80-90% всей информации, с которой мы обычно имеем дело, может быть представлено в виде ГИС.ГИС - это закономерный этап на пути перехода к безбумажной технологии обработки информации, открывающий новые широкие возможности манипулирования данными, имеющими пространственную привязку.

«Геоматика - современная дисциплина, которая объединяет сбор, моделирование, анализ и управление данными, которые имеют пространственную привязку (работает с данными, идентифицированными согласно их местоположениям). Базирующаяся на достижениях географии и геодезии, геоматика использует наземные, морские, воздушные и спутниковые датчики для получения пространственных и связанных с пространственными данных. Она включает процесс преобразования пространственно привязанных данных с определёнными точностными характеристиками из различных источников в обычные информационные системы.» Стремление к интеграции знаний столь велико, что привело к появлению новых направлений, одно из которых «геоматика». Термин этот объединяет геонауки, математику и информатику.

Часто ставится знак равенстве между геоматикой и геоинформатикой. Геоматика по определению - это научно-техническая дисциплина, имеющая целью решение задач реальной действительности на основе геоинформации, т.е. информации, связанной с геоматической (геоинформационной) системой. Геоматика включает такие дисциплины как математика, физика, информатика, картография, геодезия, фотограмметрия и дистанционное зондирование. Геоматика - это область научно-технической деятельности, которая на основе системного подхода интегрирует все средства сбора и управления пространственно-координированными данными, используемыми для производства и управления пространственно-координированной информацией. Геоматика - это сфера деятельности в науке и технике, имеющая дело с использованием информационных технологий и средств коммуникаций для сбора, хранения, анализа, представления, распространения и управления пространственно-координированной информацией, обеспечивающей принятие решений. Геоматика - это наука и технология, изучающая характер и структуру пространственной информации, методы ее сбора, организации, классифицирования, оценки, анализа, управления, отображения и распространения, а также - инфраструктуру, необходимую для оптимального использования этой информации.

Учебная программа по геоматике включает 4 основных раздела:

    Сбор данных - полевые съемки, фотограмметрия, составление производных карт, координатная привязка данных, дистанционное зондирование, глобальные позиционные системы.

    Обработка - вычисления, оценка, интерпретация, анализ, контроль качества, хранение данных

    Управление - объединение данных, редактирование, моделирование, планирование, принятие решений, маркетинг, анализ качества, правовые основы, взаимодействие с клиентом (пользователем), стандарты передачи данных, авторские права

    Распространение - создание карт, планов, диаграмм, отчетов, цифровых моделей, получение координированной социально-экономической информации, экранное отображение, дизайн, распределение данных и др.

Надо сказать, что в Россию преимущественно попадают такие образцы ГИС, которые ориентированы либо на работу в основном с мелкомасштабными картами (например, М1:1000000 - М1:50000), либо на бизнес-анализ территориально распределённой информации, причём для отображения карты в таких системах не ставится задача удовлетворения всем необходимым стандартам на представление картографической информации.

На переднем каре геоинформатики - в области работы с весьма насыщенными и громоздкими крупномасштабными (М1:2000 или М1:500) картами городов подобные западные ГИС не очень хорошо приспособлены. Другие же ГИС, - которые призваны моделировать сложные динамические процессы, протекающие на территориях городов, или физические процессы в инженерных коммуникациях, стоят многие тысячи долларов на каждое рабочее место, а потому перспективы их продаж в России в период кризиса очень плохие. Их практически и не завозят в нашу страну. Продаются в основном не самые развитые продукты, которые трудно применить на городском уровне в той мере, в какой это необходимо большинству городских служб.

Приведём некоторые ГИС, которые могут представлять интерес.

Наиболее хорошо себя зарекомендовали для работы с мелкомасштабными "природными" картами (геология, сельское хозяйство, навигация, экология и т.п.) такие ГИС, как ArcInfo и ArcView GIS. Обе системы разработаны американской компанией ESRI (www.esri.com., www.dataplus.ru.) и весьма распространены в мире.

Из относительно простых западных ГИС, которые начинали свою родословную с анализа территорий в объёме, необходимом для бизнеса и относительно простых применений, можно назвать систему MapInfo, которая также распространена в мире весьма широко. Эта система очень быстро прогрессирует и сегодня может составить конкуренцию самым развитым ГИС.

Корпорацией Intergraph (www.intergraph.com) поставляется ГИС MGE, базирующаяся на основе AutoCAD-подобной системы MicroStation, выпускаемой в свою очередь компанией Bently. Система MGE представляет собой целое семейство различных программных продуктов, помогающих решать набольшее множество задач, существующих в области геоинформатики.

Все указанные продукты имеют и Internet-ГИС-серверы, позволяющие публиковать цифровые карты в Internet. Правда, приходится говорить только о вьюерах, поскольку обеспечить сегодня редактирование топологических карт со стороны удалённого клиента Internet нельзя по причине недостаточной развитости как ГИС-, так и Internet-технологий.

Буквально недавно вышла на рынок ГИС и Microsoft, подтвердив, тем самым, что ГИС станет в ближайшем будущем такой системой, которую должен иметь на своём компьютере всякий мало-мальски уважающий себя пользователь, как он имеет сегодня у себя Excel Или Word. Microsoft выпустила продукт MapPoint (Microsoft MapPoint 2000 Business Mapping Software), который вошел в состав Office 2000. Эта компонента офисного продукта будет ориентирована в основном на бизнес-планирование и анализ.

Отечественные гис

Повторением концепции ArcInfo, но сильно уступающей последней по функциональной полноте является отечественная система GeoDraw, разработанная в ЦГИ ИГРАН (г.Москва). Возможности её ограничены сегодня в основном мелкомасштабными картами. С нашей точки зрения значительно "сильнее" здесь выглядит "старейшина" отечественной геоинформатики - ГИС Sinteks ABRIS. В последней хорошо представлены функции по анализу пространственной информации.

В геологии сильны позиции ГИС ПАРК (Ланэко, г.Москва), в которой также реализованы уникальные методы моделирования соответствующих процессов.

Наиболее "продвинутыми" в области представления и дежурства крупномасштабных насыщенных карт городов и генпланов крупных предприятий можно считать две отечественные системы: GeoCosm (ГЕОИД, г.Геленджик) и "ИнГео" (ЦСИ "Интегро", г.Уфа, www.integro.ru). Эти системы - одни из самых молодых и потому разрабатывались сразу с использованием самых современных технологий. А систему "ИнГео" разрабатывали даже не столько геодезисты, сколько специалисты, относящие себя к профессионалам в области имитационного моделирования и кадастровых систем.

В целом в России едва ли не в каждой организации создают свою ГИС. Однако, как мы хотели показать в данной статье, этот процесс - весьма непростой, и вероятность его завершения неудачно несравненно более высока, чем вероятность безпроблемной реализации, не говоря уже о возможности выхода коммерческого продукта, допускающим отчуждение

ГИС-продукты, произведенные в РФ, набрали вес и функциональность

Ровно семь лет прошло с тех пор, как PC Week/RE опубликовал обзор о перспективах универсальных российских ГИС (www.pcweek.ru/Year2000/ N28/CP1251/GeoInfSystems/chapt1.htm) и задался вопросом, выживут ли местные производители или будут снесены мощным потоком с Запада. В общем и целом автора статьи интересовало "кто кого?", но в реальности все сложилось вполне удачно: и российские, и зарубежные разработчики в нашей стране мирно сосуществуют и находят своих потребителей. Отрадно, что большинство производителей интересных и многообещающих продуктов не канули в Лету - и ЦГИ ИГ РАН (Центр геоинформационных исследований Института географии Российской академии наук, geocnt. geonet.ru), и уфимская компания "Интегро" (www.integro.ru), и КБ "Панорама" (www.gisinfo. ru), и фирма "РАДОМ-Т" (www.objectland.ru) благополучно здравствуют и стабильно развиваются. Правда, не обошлось и без потерь - с дистанции сошла компания "Ланэко", разработчик ГИС "Парк", а фирма "Трисофт" (www.trisoftrus.com) более не выпускает новых версий геоинформационного ПО Sinteks ABRIS, хотя и поддерживает его пользователей и продолжает выполнять ГИС-проекты, но уже на продуктах компании ESRI. Петербургское предприятие CSI Software (www.trace.ru), фигурировавшее в обзоре семилетней давности, в настоящий момент сосредоточено на выпуске ПО для комплексных ИС, включающих геоинформационную составляющую; в частности, оно поддерживает сайт "Желтые страницы" (www.yell. ru) и картографическую поисковую систему Go2Map (www.go2map.ru). Это предприятие решает посредством ГИС транспортные и мониторинговые задачи и создает картографические интернет-приложения и ПО для мобильных устройств.

ГИС ObjectLand

В целом появлению ГИС отечественного производства наша страна не в последнюю очередь обязана бедности потенциальных заказчиков. Конечно, само по себе стесненное материальное положение еще не является гарантией прогресса, но в нашем случае это было именно так: почти все известные и востребованные на сегодняшний день российские ГИС были созданы в 90-х годах, когда потребность в них стала очевидной, но финансовые возможности НИИ, вузов и городских администраций не позволяли покупать дорогие зарубежные разработки. В частности, ЦГИ ИГ РАН и КБ "Панорама" выпустили свои первые продукты в 1991 г., компания "РАДОМ-Т" - в 1993-м, а фирма "Интегро" - в 1998-м.

Оплот геоинформационной стабильности России

Что касается ЦГИ ИГ РАН, то этому институту абсолютно не свойственны какие-либо технологические или организационные метания. Он методично трудится на ниве развития технологий создания и интеграции пространственных данных, рассматривая выпуск ПО в качестве составной части работ по подготовке нормативных документов, технологических процессов, обучению кадров и помощи в запуске специализированных центров геоинформационной направленности. В настоящее время ЦГИ ИГ РАН выпускает профессиональную геоинформационную систему "ГеоГраф ГИС" (geocnt.geonet.ru/rus/gg20.html), пакет ActiveX-компонент для создания прикладных ГИС "ГеоКонструктор" (geocnt. geonet.ru/rus/gc20.html) и средство для публикации карт в Интернете GeoConstructor Web (geocnt.geonet.ru/rus/gc_ web.html). Как сообщил PC Week/RE руководитель ЦГИ ИГ РАН Николай Казанцев, в 2006 г. в продукты компании был встроен механизм синхронизации нетопологических слоев при их многопользовательском редактировании в ЛВС, а также развит и дополнен ГИС-функционал для обеспечения организации и предоставления пространственных данных согласно "Концепции создания и развития инфраструктуры пространственных данных РФ", принятой распоряжением Правительства РФ от 21 августа 2006 г. N 1157-р. ЦГИ ИГ РАН принимает активное участие в разработке нормативных правовых документов в данной области, включая первые национальные стандарты. Это направление является крайне важным для решения практических задач - в частности, упорядочения ситуации с земельным налогом, собираемость которого из-за проблем с достоверностью и полнотой пространственных данных составляет примерно 10-20% от возможного. "Использование геоинформационных технологий и повышение полноты и достоверности данных о земельных участках позволили в прошлом году увеличить сумму земельного налога в Мытищинском муниципальном районе более чем в четыре раза, - отметил Николай Николаевич. - Современные ГИС-технологии в России будут эффективны лишь при ориентации на решение повсеместной проблемы неполноты, недостоверности и несогласованности предоставляемых различными организациями пространственных данных об одних и тех же объектах, обеспечения правового статуса этих данных и создания систем разделения ответственности за них".

ГИС “Карта 2005”

Нетривиальный продукт, написанный на Visual SmallTalk

ГИС ObjectLand, созданная и распространяемая компанией "РАДОМ-Т", является многопользовательской системой, обладающей помимо стандартных для ГИС функций широкими возможностями по интеграции данных из внешних источников, управления правами доступа к геоданным и возможностями программирования для сторонних разработчиков с использованием программного ядра системы. ГИС ObjectLand в первую очередь ассоциируется с земельным кадастром, хотя эта ассоциация только историческая, на самом деле ObjectLand - это универсальная ГИС для использования в любых предметных областях. Наиболее интенсивно ObjectLand применяется в учреждениях Роснедвижимости, входя в состав программного комплекса "Единый государственный реестр земель". В настоящее время продукт эксплуатируется примерно в 1700 земельных кадастровых палатах России. К слову, в 2005 г. журнал PC Magazine/RE отметил ObjectLand в числе лучших программных продуктов России и присудил награду "Best Soft 2005". Из других отраслей ObjectLand активно используется в ОАО РЖД, где стараниями отделения геоинформационных технологий ВНИИАС МПС выполнен комплекс работ по сбору и подготовке пространственных данных о сети железных дорог России.

Стоимость ГИС ObjectLand программы для одного пользователя составляет 3000 руб., для пяти пользователей - 7500 руб. Как отмечают руководители проекта, предложить такие доступные цены стало возможным после перехода на онлайновый способ продаж. Для оценивания и некоммерческого использования ПО предлагается специальная версия, не имеющая никаких функциональных и количественных ограничений по сравнению с коммерческим вариантом продукта. Единственное отличие - при отображении и печати карт в одном из углов всегда отображается надпись, напоминающая о некоммерческом характере используемой версии. Такая версия ГИС ObjectLand может бесплатно использоваться для обучения во всех учебных заведениях. Кстати, компания "РАДОМ-Т" единственная из всего списка активно пытается выйти на мировой рынок, предлагая как русскоязычный, так и англоязычный вариант продукта (www. gis-objectland.com).

Как сообщили разработчики, в настоящее время завершается работа над новой версией ObjectLand 2.7, которая обеспечит хранение пространственных данных во внешних базах. В этой версии реализована поддержка СУБД MS SQL, Oracle, DB2, Interbase, MS Access,

MSDE, MS SQL Server Express, MySQL, PostgreSQL и Firebird. Безусловно, сохранятся и существующие возможности хранения геоданных во внутренней СУБД.

ГИС-звезда на уфимском горизонте

Центр системных исследований "Интегро", когда-то носивший название "Альбея", - крупный производитель универсального геоинформационного ПО в России. В последние годы предприятие развивалось, реализуя комплексные проекты по автоматизации имущественных задач, а также сферы регулирования застройки городов для муниципальных и областных организаций. Линейка продуктов компании включает ГИС "ИнГЕО" (www.integro.ru/projects/gis/main_ gis.htm), которая позволяет формировать векторные топографические карты с корректной топологической структурой, основанные на результатах инвентаризации земель и снабженные планами населенных пунктов, генеральными планами предприятий, а также схемами инженерных сетей и коммуникаций. В состав ПО "ИнГЕО" входят cервер данных, предоставляющий доступ к пространственной информации в многопользовательском режиме, сервер приложений, управляющий элемент OCX "ИнГЕО MapX", и Web-сервер "ИнГЕО MapW", включающий в себя Java-аплет "ИнГЕО МарJ". Кроме того, стандартный комплект поставки содержит утилиту конвертации в различные форматы и средство оптимизации пространственных данных, позволяющее сокращать объем файлов, а также набор программных модулей "ИнГЕО" на языке VBScript, которые, в частности, дают возможность коллективно управлять видимостью карт и слоев. В ГИС "ИнГЕО" встроена среда программирования для разработки программных модулей на языках VBScript и JavaScript.

Помимо этого "Интегро" поставляет ПО "Мониторинг-ИнГЕО" для создания кадастровых систем, основанных на интранет-технологиях и способных хранить информацию об объектах городской инфраструктуры в рамках одного приложения. Продукт разработан для органов архитектуры и градостроительства, земельных комитетов, комитетов управления муниципальной собственностью, БТИ и жилищных организаций. В состав "Мониторинг-ИнГЕО" входят модули: "Ресурсы", предназначенный для учета объектов движимого и недвижимого имущества, "Регламент", позволяющий вести градостроительный, экологический и архитектурно-исторический регламенты города, а также "Сеть", обеспечивающий сбор данных с удаленных компьютеров, размещенных в инженерных службах города. "Интегро" также предлагает ПО "Имущество" для автоматизации деятельности организаций, осуществляющих учет и управление зданиями и помещениями, земельными участками, движимым имуществом и имущественными комплексами.

Если же говорить о планах предприятия, то, как сообщил его директор Вадим Горбачев, в 2007-2008 гг. ожидается серьезная реконструкция ГИС "ИнГЕО" с целью расширения функциональных возможностей системы и большей интеграции с приложениями "Мониторинг" и "Имущество". Активно обсуждается вопрос о переводе в 2007-2009 гг. продуктов компании на технологии Open Source, в частности на платформу Eclipse. К слову, цена сетевого комплекта ГИС "ИнГЕО" не меняется уже много лет и составляет 48 тыс. руб. без ограничения на количество клиентских мест. Рост продаж продуктов "Интегро" в 2006 г. по сравнению с 2005-м составил 26%. Общее число официально приобретенных экземпляров только сетевой конфигурации ГИС "ИнГЕО" на начало 2007 г. достигло 443 комплектов. Наиболее широко эта система распространена в Уральском, Приволжском и Северо-Западном федеральных округах России.

Военные корни гражданской ГИС

Изначально ГИС "Панорама" была создана топографической службой ВС РФ и предназначена для военных целей, но позже обрела большую популярность и среди гражданских пользователей. В настоящий момент совершенствованием и продвижением решения занимается ЗАО "Панорама", образованное в 2001 г. путем объединения разработчиков одноименных продуктов. Предприятие предлагает самый широкий спектр ПО среди всех линеек, упомянутых в этом обзоре. В частности, в состав семейства входят универсальная ГИС "Карта 2005" с инструментами для создания и редактирования электронных карт в многопользовательском режиме, измерений и расчетов, построения трехмерных моделей, обработки растровых данных, формирования ортофотопланов и создания матриц высот. Продукт также обладает средствами тематического картографирования, обеспечивает подготовку карт к изданию и позволяет работать с GPS-приемниками и базами данных с помощью средств конструирования запросов и построения отчетов.

Кроме того, предприятие выпускает серверное ГИС-приложение GIS WebServer, разработанное по технологии ASP.NET и функционирующее под управлением IIS в среде.NET Framework 2.0. Решение предназначено для публикации в сети электронных карт и информации из баз данных и позволяет отображать на топографической карте данные об объектах, имеющих территориальную привязку, просматривать и сортировать таблицы. ПО обладает функциями масштабирования, скроллинга, изменения размеров изображения и обеспечивает поиск и выбор объектов карты. В состав линейки продуктов также входит векторизатор "Панорама-редактор", специализированное ПО "Блок геодезических расчетов" для обработки данных полевых геодезических изысканий и ПО "Навигатор 2005". Последнее предназначено для просмотра и печати карт, растровых изображений, матриц и трехмерных моделей, созданных в ГИС "Карта 2005", а также для подключения GPS-приемников. Еще предлагаются ГИС-вьюер и решение MapView для КПК, позволяющее работать с приемниками спутниковой навигационной информации.

В портфеле "Панорамы" есть и специализированное решение "Недвижимость", предназначенное для автоматизации деятельности по сбору, систематизации и учету сведений об объектах недвижимости с их последующей привязкой к земельным участкам, а также система учета и регистрации землевладений "Земля и право", обеспечивающая сбор, накопление, хранение и использование земельно-кадастровых данных. Имеется и средство разработки ГИС-приложений GIS Toolkit - набор картографических компонентов для создания приложений в среде визуального программирования Delphi/Kylix, Builder C++ и библиотеки для Microsoft Visual C++.

Интересно, что продукты "Панорамы" используют многие российские госструктуры. В частности, именно на этом ПО была основана ГИС "Наркотики", созданная в рамках федеральной целевой программы "Комплексные меры противодействия злоупотреблению наркотиками и их незаконному обороту" и помимо всего прочего направленная на выявление ареалов возможного произрастания наркосодержащих культур.

Loading...Loading...